
DetectingCode Clones in Binary Executables∗

Andreas Sæbjørnsen Zhendong Su
University of California, Davis
{andsebjo, su}@ucdavis.edu

Jeremiah Willcock Thomas Panas Daniel Quinlan
Lawrence Livermore National Laboratory
{willcock2, panas2, dquinlan}@llnl.gov

Abstract

Large software projects contain significant code dupli-
cation, mainly due to copying and pasting code. Many
techniques have been developed to identify duplicated code
to enable applications such as refactoring, detecting bugs,
and protecting intellectual property. Because source code is
often unavailable, especially for third-party software, find-
ing duplicated code in binaries becomes particularly im-
portant. However, existing techniques operate primarily on
source code, and no effective tool exists for binaries.

In this paper, we describe the first practical clone detec-
tion algorithm for binary executables. Our algorithm ex-
tends an existing tree similarity framework based on clus-
tering of characteristic vectors of labeled trees, with novel
techniques to normalize assembly instructions, and to ac-
curately and compactly model their structural information.
We have implemented our technique and evaluated it on
Windows XP system binaries with over 50 million assembly
instructions. Results show that it is both scalable and pre-
cise: it analyzed Windows XP system binaries in a few hours
and produced few false positives. We believe our technique
is a practical, enabling technology for many applications
dealing with binary code.

1. Introduction
Code duplication is common and hinders software main-

tenance, program comprehension, and software quality.
Clone detection, the problem of identifying duplicated
code, is thus an important problem and has been ex-
tensively studied. Many clone detection algorithms ex-
ist [2, 5, 7, 8, 10, 12], ranging from the basic string-based
ones [2] to the more sophisticated ones based on program
dependency graphs [5,10].

∗This research was supported in part by NSF CAREER Grant No. 0546844, NSF
CyberTrust Grant No. 0627749, NSF CCF Grant No. 0702622, US Air Force under
grant FA9550-07-1-0532, and an LLNL LDRD subcontract. The information pre-
sented here does not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred. This work performed under the aus-
pices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344. This work was funded by the Laboratory
Directed Research and Development Program at LLNL under project tracking code
07-ERD-057. LLNL-PROC-406820

Mostexisting clone detection algorithms operate only on
source code, but not on binaries. However, the ability to
detect binary clones is important because source code is not
always available, for example, in the case of commercial
off the shelf (COTS) software. A practical clone detection
algorithm for binaries can enable many applications, such
as the discovery of copyright infringements or the detection
of sophisticated viruses, without requiring any source code.

Low-level binaries offer additional interesting chal-
lenges for clone detection. First, the problem demands bet-
ter scalability because a single source statement is normally
compiled down to many assembly instructions. Second,
various choices made by a compiler, such as register and
storage allocation, complicate detection. To see this, con-
sider the following x86 assembly code:

mov [0x805b634], 0x0
mov [0x805b63c], eax
add esp, 0x10
mov eax, ebx

where [0x805b634] dereferences the memory location
0x805b634 (similarly for [0x805b63c]), andeax, ebx,
andesp are registers. If we use the specific memory ad-
dresses or register names for clone detection, we will likely
to be too specific to misstrue clones. On the other hand,
if we simply use opcodes (i.e., mnemonics) of the instruc-
tions, we will likely to be too general and reportfalse
clones. Third, assembly instructions have a fixed, almost
flat structure, while source programs can have arbitrarily
deep structures. The rich structural information in source
code is a key factor for clone detectors to perform well. All
these differences require novel techniques for detecting bi-
nary clones.

In this paper, we present the first practical binary clone
detection algorithm. Our algorithm follows a general tree
similarity framework [7]: Instead of performing a quadratic
number of pair-wise comparisons of instruction sequences,
it models the essential structural information of the instruc-
tion sequences with numerical vectors and groupssimilar
vectors to identify clones. We present novel techniques to
generate precise and robust vectors for binaries and to com-
pactly represent the vectors for improving scalability.

LLNL-PROC-406820

Figure 1. Disassembly and clone detection process.

Figure 2. Example Syntax Tree for disassem-
bled binary for stride 1 and window size 3.

We have implemented our algorithm and evaluated it on
Windows XP system binaries with 50 million instructions.
The results are promising and show that our technique is
both scalable and precise. All the Windows XP binaries can
be processed routinely under a few hours, and the detected
clones are accurate with few false positives. Roughly 20%
of the code appears in at least one clone cluster, which is
consistent with results for source code [7, 8, 12]. The clone
information also indicates certain modular structure in the
code (see Section 5).

The rest of the paper is structured as follows. We first
provide a high-level overview of our algorithm (Section 2).
The detailed algorithm is presented in Section 3. Next, we
discuss the implementation (Section 4) and evaluation (Sec-
tion 5) of our algorithm. Finally, we survey related work
(Section 6) and conclude (Section 7).

2. Overview

Figure 1 shows the flow-chart for our clone detection al-
gorithm. This section explains this process with the help
of the simple example from Section 1. Detailed technical
descriptions of each step will be given in the corresponding
sections shown in the figure.

First, we use a disassembler to process all input bina-
ries and create their intermediate representations. For ex-
ample, Figure 2 shows how we represent the sample in-

structionsequence from Section 1. Notice that each as-
sembly instruction consists of amnemonic(e.g.,mov) and
an operand list(e.g.,esp, 0x10). Our intermediate rep-
resentation preserves all binary file information, including
instructions, header information, segments, etc; Section 3.1
describes the representation in more detail.

Second, the normalizer step (cf. Section 3.2) creates a
normalizedinstruction sequence, abstracting away memory
and register specific information. The following shows the
normalized instruction sequence for the example:

mov MEM1, VAL1
mov MEM2, REG1
add REG2, VAL2
mov REG1, REG3

Third, we perform clone detection on the normalized
instruction sequences. We separate the problem into two
cases, mostly for efficiency reasons. One case isexact clone
detection, where only identical normalized instruction se-
quences are returned. The other case isinexact clone de-
tection, where certain differences are tolerated. This is a
computationally challenging problem. We usefeature vec-
tors to approximate structural characteristics of the given
assembly instruction sequences and group close vectors to
find clones. See Sections 3.3.2 and 3.3.3 for more details.

We now have a set ofclone clusters,i.e., instruction
sequences of a certain size1 that are considered similar.
For inexact clone detection, the similarity threshold is user
defined while that between instruction sequences for ex-
act clone detection is one. For instance, the clone cluster
C = {seq1, seq2, seq3} contains three similar instruction
sequences,seq1, seq2, and seq3. Two sequences within
a clone cluster, sayseq1 and seq2, may overlap substan-
tially and should not be considered clones. Removing such
spurious clones is conducted by a postprocessing step (Sec-
tion 3.4).

So far in the detection process, we consider only instruc-
tion sequences of a certain predefined length, but reporting
many small clones is not as useful as reporting a few large
ones. So, in the final step, we combine smaller contiguous

1This is referred to as thewindowas shown in Figure 2.

2

LLNL-PROC-406820

clones into larger ones. The algorithm for doing this is pre-
sented in Section 3.5.

3. Algorithm Description
This section gives a detailed description of our algo-

rithm, structured according to the flow-chart in Figure 1.

3.1. Binary Disassembly
An assembly instruction is a pair ofmnemonicm and a

list of operandso. The mnemonicm represents the partic-
ular operation that the instruction performs, and is from a
finite setM of possible mnemonics. The list of operands
is a variable-length, but typically short, sequence of ele-
ments from the setO of possible operands. We partition
the setO of operands into three categories:memory refer-
ences(e.g.,[0x805b634]), register references (e.g.,eax),
and constant values (e.g.,0x10). We do not use any of
the structure of the individual operands other than this cat-
egorization, but we do assume the ability to compare two
operands for syntactic equality. In the following algorithm
descriptions, an instruction is defined as an element of the
set M × O∗, with O partitioned intoOmem , Oreg , and
Oval . We use the functionsmnemonic andoperands to
access the two parts of an instruction, and zero-based sub-
scripts (of either single elements or intervals) to indicate
accesses to elements or contiguous subsequences of a se-
quence; the++ operator is used to indicate sequence con-
catenation, and the+ operator is used to add a single ele-
ment to a set or bag. The functiontype maps fromO to
the setOPTYPE = {MEM ,REG ,VAL} based on the
particular category of an operand.

The full disassembly of a particular executable or library
is defined as a sequence of functions, with each function
containing a sequence of instructions. We define clones in
terms ofcode regions, which are simply contiguous subse-
quences of the instructions of a single function, along with
information on the starting address, function, and file of that
list of instructions. We ignore that extra information for
clone detection, but it is preserved by our algorithms and
used by the postprocessing and visualization stages. We
assume that algorithms that create and/or transform code
regions implicitly process the extra information appropri-
ately. When the distinction is important, the two functions
instructions andextraInfo access the two parts of a code
region. The actual process of creating the disassembled in-
structions for a program and grouping them into functions
is implementation-specific; our particular implementation is
explained in Section 4.

We split each function of a binary into code regions us-
ing two parameterswindowandstride. The window is the
length of the code region to generate. The starting points
of the code regions within a function are separated by the
stride; note that code regions can, and almost always will,
overlap. For example, with window size 50 and stride 10,

the first three code regions contain instructions 0–49, 10–
59, and 20–69 respectively. Algorithm 1 is used to compute
the code regions within a particular function. As the win-
dow size and stride are constant for a particular run, this
algorithm takes linear time in the number of vectors pro-
duced. For a single functionF of length l, the number of
vectors generated isb(l − w + 1)/sc.

Algorithm 1 Generate code regions
Require: f : Disassembled instructions for a single func-

tion, w: Window size,s: Stride
Ensure: R: The set of code regions

1: R← ∅
2: for i = 0 to length(f)− w + 1 steps do
3: thisRegion ← f[i,i+w)

4: R← R + thisRegion

3.2. Code Region Normalization

As explained in Section 2, the particular operands used
in a code region may be specific to that code region, and
so some “fuzziness” should be allowed in clones. For
example, two regions may be identical except for certain
constant values, offsets in memory locations, or particu-
lar addresses used as branch targets. In order to account
for these differences, we normalize the instructions in a
code region using Algorithm 2. This function takes a list
of instructions in the〈mnemonic, operands〉 format and
converts them to beabstract instructionsin the format
〈mnemonic, abstract operands〉. An abstract operandis
a pair of an operand type (eitherMEM , REG , or VAL
from the setOPTYPE) and a natural number indicating
the index of the first occurrence of that particular operand
expression within the code region. The operands are num-
bered separately for each operand type. The normalization
produces anabstract code region, which is just a list of ab-
stract instructions. The normalization algorithm takes linear
time in the number of instructions in the code region, and is
run once on each code region in the program.

3.3. Clone Detection

We define two ways to find clones among binaries: exact
matching of normalized code regions, and inexact matching
of feature vectors representing important aspects of the code
regions. Both of these algorithms use linear time and space
to find the initial set of clone clusters.

3.3.1 Definitions of Clone Pairs and Clusters

Code regions can appear in clone pairs and in clone clus-
ters. Aclone pair is an unordered pair of code regions that
are “close enough” (by a metric defined later) to be consid-
ered to match. We form clone pairs intoclone clustersby
finding groups of clone pairs that all contain the same code

3

LLNL-PROC-406820

Algorithm 2 Normalize a code region
Require: r: Input code region
Ensure: r’: Output abstract code region

/* N is a mapping fromOPTYPE to the sequence of
operands of that type seen so far */

1: N ← ∅
2: r′ ← 〈〉 with extra infoextraInfo(r)
3: for all instructions i in r do
4: ops ′ ← 〈〉
5: for all operands o in operands(i) do
6: t← type(o)
7: if o is an element ofN [t] then
8: idx ← zero-based index ofo in N [t]
9: else

10: idx ← length(N [t])
11: N [t]← N [t] ++ 〈o〉
12: o′ ← 〈t, idx 〉
13: ops ′ ← ops ′ ++ 〈o′〉
14: i′ ← 〈mnemonic(i), ops ′〉
15: r′ ← r′ ++ 〈i′〉

region. Always for exact matching, and in practice for in-
exact matching, the clone pair relation is transitive, and so
choosing the neighbors of an arbitrary code region is appro-
priate.

For measuring the accuracy of our clone detection algo-
rithm, we define false positives and false negatives. A clone
pair is considered to be afalse positivewhen it is found
by the clone detection algorithm and yet the normalized in-
struction sequences of the two code regions in the pair are
not identical. A clone pair is afalse negativeif it satisfies the
definition of a clone pair given above and yet is not found by
our algorithm. False positives and false negatives can never
appear when using exact matching of normalized instruc-
tion sequences (by definition), but our inexact matching al-
gorithm has both types of error. In order to test the accuracy
of our algorithm, we test the inexact matching algorithm
with a distance of less than one to simulate exact matching
on feature vectors, and determine how well those results
match the actual exact matching algorithm. Note that two
distinct normalized instruction sequences may have exactly
the same feature vector, so there can be false positives in a
vector-based matching algorithm even when exact matches
of vectors are found.

3.3.2 ExactClone Detection

Exact matching uses a traditional hash table on the normal-
ized instruction sequences, as shown in Algorithm 3. Al-
though this algorithm produces a set of clone clusters, the
corresponding set of clone pairs can be found by converting
the partitionC into an equivalence relation. This algorithm
requires linear time, and produces exactly the correct set

Algorithm 3 Find exact clone clusters
Require: R: A set of abstract code regions
Ensure: C: A set of clone clusters, each of which is a set

of code regions
1: H ← empty hash table mapping from sequences of ab-

stract instructions to sets of code regions
2: for all code regionsr in R do
3: add r to H[instructions(r)]
4: C ← {c ∈ values(H) : |c| ≥ 2}

of clone clusters (that is, it does not have false positives or
false negatives).

3.3.3 Inexact Clone Detection

To find inexact clones, we adapt the basic approach devel-
oped by Jianget al. [7] for locating source code clones. We
characterize each code region using a setF of features, each
of which identifies one property we consider important. For
example, each possible instruction mnemonic is a feature,
and each combination of the instruction’s mnemonic and
the type of the instruction’s first operand is a feature. The
features we use are local to each abstract instruction, and
can thus be evaluated independently on the instructions in a
code region. We count the number of occurrences of each
feature within a code region, producing afeature vectorfor
the region. Formally, a feature vector is a vector of natural
numbers of length|F |, based on a fixed but arbitrary order
of the features inF . We allow feature vectors to be indexed
directly by features rather than requiring an explicit map-
ping from features to vector indices.

We count the following features of an abstract instruction
or abstract code region;F is the disjoint union of the sets
given. These five categories of features were necessary to
consider for the feature vectors to accurately characterize
the code:

• M , representing the mnemonic of the instruction;

• M × OPTYPE , representing the combination of the
mnemonic and the type of the first operand when one
is present;

• OPTYPE × Nk, representing each normalized
operand of the instruction whose index is under a cho-
sen limitk;

• OPTYPE ×OPTYPE , representing the types of the
first and second operands, in that order, of an instruc-
tion with at least two operands; and

• OPTYPE , representing the type of each operand in
an instruction.

As we treat the window size as a constant, and the num-
ber of operands in an instruction is at most a small number,

4

LLNL-PROC-406820

Algorithm 4 regionToVector: Generate feature vector
Require: r: An abstract code region
Ensure: v: A feature vector

1: b← an empty bag (multiset) of features fromF
2: for all instructions i in instructions(r) do
3: b← b + mnemonic(i)
4: for all 〈t, idx 〉 ∈ operands(i) do
5: if idx < k then
6: b← b + 〈t, idx 〉
7: b← b + 〈mnemonic(i), t〉
8: b← b + t
9: ops ← operands(i)

10: if length(ops) ≥ 2 then
11: b← b + 〈type(ops0), type(ops1)〉
12: v ← bagToVector(b)

we can treat the vector generation for a single code region
as a constant-time operation. The overall vector generation
for a large set of code regions is then a linear-time opera-
tion (each region can be processed independently). Algo-
rithm 4 produces the feature vector for a code region. The
bagToVector creates a vector from a bag by counting the
number of occurrences of each element ofF in the bag.

Once code regions have been mapped to feature vectors,
we then define the distance between two code regions as
thel1 distance between their corresponding feature vectors.
The distance between the vectors is intended to approximate
the dissimilarity between the code regions. We then define
an inexact clone pair for a distanceδ as an unordered pair
of code regions{r1, r2}, with feature vectorsv1 andv2 re-
spectively, where||v1 − v2||1 ≤ δ. The parameterδ affects
the similarity required between the feature vectors: having
δ = 0 requires the vectors to be identical and thus the code
regions to be almost the same, while larger distances allow
more dissimilar code regions to appear in clone pairs.

Given the space of vectors and a distance metric, we
would like an efficient way to find all vectors within a given
distance from a query vector; i.e., we would like arandom-
ized near neighbordata structure and algorithm. We fol-
low the approach in Deckard [7] and uselocality-sensitive
hashing (LSH)for this purpose. In particular, we use the
set of hash functions from [6] for thel1 distance on vec-
tors of natural numbers. LSH is an approximate algorithm,
allowing false negatives in order to achieve constant time
and space insertion and queries for distance-based match-
ing when given appropriate parameter choices. Our inexact
clone detection approach is shown in Algorithm 5. This al-
gorithm requires an empty hash table set to be passed as
its input; LSH uses two parameters to create the hash func-
tion, and they must be chosen carefully for good perfor-
mance and accuracy. See Section 4.2 for more information.
The functionvectorsInBucket(v1) used in the code finds

Algorithm 5 Find inexact clones
Require: R: Set of abstract code regions
Require: δ: Distance to use for queries
Require: H: Empty LSH hash table set
Ensure: C: Set of clone clusters

1: V ← {regionToVector(r) : r ∈ R}
2: for all vectors v in V do
3: insert v into H
4: C ← ∅
5: for all vectors v1 in V do
6: if v1 /∈

⋃
C then

7: M ← vectorsInBucket(v1)
8: c← {v2 ∈M −

⋃
C : ||v2 − v1||1 ≤ δ}

9: C ← C + c
10: C ← {c ∈ C : |c| ≥ 2}

all vectors that hash into the same bucket asv1 in any of the
hash tables in the LSH hash table structure; this set is the
same as the set of elements that would be searched in a near
neighbor query for the elementv1 in H. Note that this al-
gorithm produces clusters greedily in such a way that each
code region is in at most one cluster. Although the order of
iteration through the regions can change the set of clusters
produced for non-transitive neighbor relations, we assume,
supported by past literature, that the relation is transitive or
close to it. Allowing overlapping clone clusters can lead to
an algorithm requiring quadratic time, while the limitation
to non-overlapping clusters uses only linear time.

Although Deckard [7] uses Euclidean (l2) distances to
detect inexact clones in source code, we chose to usel1 dis-
tances instead: our data sets are very different from those
used by Deckard and required us to recompute parameters
for every group, which could be done analytically for thel1
norm more easily than forl2. According to Gioniset al.[6],
thel1 norm is a tighter bound than thel2 norm.

Every inexact clone detection phase is optimized by first
performing exact clone detection and thereby making sure
that every distinct vector is only represented once when do-
ing LSH-based inexact clone detection, even if that same
vector is used for several code regions. The results of the ex-
act and inexact clone detection are merged when both runs
are done.

3.4. Removing Trivial Clones

When the strides used to generate code regions is
smaller than the window sizew (i.e., the length of each
code region), it is possible that two code regions in the same
function almost completely overlap with each other. As the
feature vector generation is almost independent of the or-
der of the instructions, it is likely that these two regions
would be detected as a clone pair. However, such a pair
is not interesting as it is effectively stating that a region of

5

LLNL-PROC-406820

Algorithm 6 Remove trivial clones
Require: C: Set of clone clusters
Require: o: Allowed fraction of overlap
Require: w: Window size
Ensure: C ′: Post-processed set of clone clusters

1: C ′ ← ∅
2: for all clusters c in C do
3: c′ ← ∅
4: for all functions f containing regions inc do
5: R← code regions fromf in c
6: sort R by instruction offset within f
7: first ← >
8: lastOffset ← 0
9: for all code regionsr in R do

10: offset ← offset ofr within f
11: if first or offset ≥ lastOffset + o · w then
12: c′ ← c′ ∪ {r}
13: lastOffset ← offset
14: first ← ⊥
15: if |c′| ≥ 2 then
16: C ′ ← C ′ + c′

codeis a clone of itself. We define a parametero that indi-
cates the fraction of instructions that two regions can have
in common and still be considered a legitimate clone pair,
and reduce the set of clone clusters using Algorithm 6.

It is unclear what it means when two overlapping code
regionsr andr′ are considered clones. In our experiments
we have decided on an overlap of 50 percent or less. Al-
though a few of the clones that are not filtered out can be
considered false clones, we are more concerned with com-
pleteness of our clone-set than this problem. If it is desir-
able to do so, filtering out all overlapping regions can be
done just by changingo.

This algorithm is finding the maximum independent set
of an interval graph (the graph of overlapping vectors within
a single clone cluster and function), a problem that can be
solved using sorting inO(n log n) time andO(n) space.
Here, the nonlinear term is only applied to those code re-
gions that are both within the same clone cluster and the
same function, making the algorithm effectively linear.

3.5. Finding Largest Clones

Finding the largest sequences of instructionsA andB
that are part of a clone pair{A,B} is important to avoid an
overestimate in the reported number of clones. Since there
are overlapping vectorsA andA′ in the set of vectors inC,
we must expect that the number of clones and the total num-
ber of vectors in the clones is an overestimate. For instance,
if there is a sequence of lengthn (n ≥ w) that matches be-
tween functionsf1 andf2 then it will be represented by up
to b(n − w)/sc + 1 clusters in C. Ifn is 500, the window

Algorithm 7 Estimating the Largest Clone Pairs
Require: L: Sequence of clone pairs
Ensure: L: Set of largest clone pairs

1: sort L using the order in the text
2: n← ∅
3: L′ ← {∅}
4: for all n′ in L do
5: if overlap(n, n′) then
6: n← join(n, n′)
7: else
8: L′ ← L′ + n
9: n← n′

10: L← (L′ + n)− {∅}

sizew is 40, and the strides is 1, that single logical clone
pair becomes 461 pairs in the output.

The algorithm in Algorithm 7 finds the largest clone
pairs {a, b}, but does not find the largest clone clusters.
Clone pairs can be generated from a clone cluster by taking
all unordered pairs of distinct code regions from the cluster.
There may be a quadratic number of clone pairs from a sin-
gle clone cluster, although clusters are typically not large.
The algorithm relies on a total order among code regions;
the code regions are first grouped by the functions contain-
ing them, and are sorted by the instruction offset within each
function. The algorithm assumes thata is less thanb in each
clone pair. We sort the clone pairs according to the two ele-
ments of the pair in that order. Sorting ensures that if there
are two sequences inA andB that overlap then all clone
pairs for those sequences will be adjacent in the list.

Given a sorted list we do a linear search over the list
of clone pairs where clones in sequence that overlaps are
joined into a bigger clone pair. We define two clone pairs
{a, b} and{a′, b′} to be overlapping if the code sequences
corresponding toa overlaps witha′ and similarlyb over-
laps withb′. A sequenceX then overlaps withX ′ if both
sequences are within the same functionf and they contain
some of the same instructions.

When joined the two clone pairs are then replaced by a
larger, joined clone pair. The joining is inherently optimistic
and assumes that if two overlapping clone pairs are joined
then the joined pair is also a clone. We expect this to create
false positives, but since the number of those larger clones
is small it is cheap to run a more expensive algorithm on the
joined pairs in order to remove false positives.

The computational complexity of Algorithm 7 is
O(n log n) wheren is the number of clone pairs, as sorting
is the most computationally complex task. The number of
clone pairs is itselfO(m2N) in the worst case, whereN is
the number of clone clusters, andm is the size of the largest
clone cluster. The actual number, however, is proportional
to the sum of the squares of the clone cluster sizes, and the

6

LLNL-PROC-406820

number of large clone clusters is not expected to be large.

4. Implementation
We implemented our algorithm as a clone detection tool

that uses IDA Pro for disassembly and is therefore capable
of interpreting both ELF (Linux) and PE (Windows) exe-
cutable formats. Although we selected IDA Pro as a fron-
tend for disassembling the binaries in this study, our im-
plementation does not rely on it. We also use IDA Pro to
recognize the functions in each binary. As part of the ROSE
compiler project we have developed an open source disas-
sembler; it has been used for clone detection on approxi-
mately a thousand Windows PE and Linux ELF formatted
files but results from this work are too recent for inclusion
in this paper.

Our clone detection and analysis system is implemented
using C++and uses a SQLite (version 3) database for com-
munication. Each phase of the analysis is implemented as a
separate program, allowing new analyses to be added modu-
larly. The first pass converts a set of disassembled functions
and instructions from IDA Pro into the ROSE intermediate
representation, and from there to both feature vectors and
normalized assembly instructions. These are inserted into
the database. Given these, either exact or inexact clone de-
tection may be run, each producing a new table of clone
clusters; this table may also have trivial clusters removed
during the clone detection process. Largest clones can then
be found if desired, and then visualization can be applied to
the resulting database.

4.1. Memory and Computational Efficiency
The dimensionality of the feature vector is 26 times

larger for binaries than reported for source code in [7]. The
memory usage and computational complexity of LSH thus
increase by at least 26 times when using LSH on object code
as compared to source code. Since each dimension takes at
least one byte, and often more, it is necessary to create a
compressed representation for large data sets.

We made the observation that our feature vectors are
sparse and largely consist of small numbers. For example,
we define a large set of featuresF that includes features
such as the number of references to the 80th memory refer-
ence in a code region; it is unlikely that there are 80 memory
references in a region, and so this element of the feature vec-
tor is almost always zero. Since we only generate the data
set once and use it many times, it is beneficial to construct
a compressed representation once and reuse it, saving disk
and memory space. Because zero elements in the vector are
handled specially, they can be skipped in some computa-
tions to save CPU time.

We use a compressed representation that run-length en-
codes contiguous sequences of zero elements in the vec-
tor, plus encodes numbers using variable numbers of bytes
based on the values of the particular entries. Several con-

tiguous vector elements that are each near zero can also be
packed into a single byte. Experimentally, we have shown
that this technique can use 17 to 36 times less space to store
the same set of vectors. Generally, computation time is
traded for memory when using compressed representations,
but we were able to operate on the compressed vectors di-
rectly and thus take advantage of the fact that many vector
elements are always zero to save computation in the vec-
tor kernels used by LSH (dot products, element extraction,
norm computation, etc.), as well as not requiring time or
storage for decompression. We store vectors in compressed
form both on disk and in memory. Without compressing the
vectors, our data sets would require hundreds of gigabytes
of disk space; compression allows the same data sets to be
processed entirely in memory if desired.

4.2. LSH Parameter Tuning

If a family of LSH hash functionsH is used to find
clones inO(n log n) time then the parameters controlling
the probabilities of two similar elements colliding must be
carefully chosen. The number of hash tablesl and the num-
ber of elements in a single hash functionk determine the
runtime and accuracy of the algorithm. The general rule is
that a largerk increases the false negative rate while a larger
l increases the collision rate (i.e., the percentage of elements
scanned in the query but that are not within the desired dis-
tance). An LSH data structure consists ofl independent
hash tables, each containing the same data but a different
hash function; each hash function is built fromk compo-
nents. LSH’s memory usage is thus proportional tol, even
with the number of buckets and bucket size fixed. Thek pa-
rameter does not affect memory usage substantially, and has
only a weak impact on the time used for hash table opera-
tions; however, the value ofk determines how many results
are returned for a given query, leading either to unnecessary,
failing distance tests or false negatives.

Parameter selection was challenging for our dataset since
the dimensionality of our dataset is 26 times larger than
in [7]. Our dataset has large distances between different
vectors, and in particular thel1 norms of the vectors in our
data set vary. We observed through experiments that LSH
does not handle such data sets well, and thus we apply LSH
separately to sets of vectors grouped using theirl1 norms.
The Deckard [7] system also uses this approach. Groups are
chosen to overlap such that any two vectors that are within
the distance boundδ are in at least one group together. We
then choose the LSH parameters for each group separately.
The experimental approach for selecting parameters as done
in [1] was not viable for our application, and so we choose
optimal parameters analytically.

We use the approach from [16] for this purpose. We use
their model of LSH behavior to define a function fromk, l,
and the distanced between two vectors to find the proba-

7

LLNL-PROC-406820

bility of one being found in a query for the other. Assum-
ing a uniform distribution of distances between vectors, we
add the probability that vectors within the distance bound
will not be found (false negatives) and the probability that
vectors outside it will be found (collision rate). This sum
provides a score for that particular set of parameters. We
then use the cost model from [16] to estimate the time used
for the given set of parameters, and varyk to optimize the
cost for a given level of accuracy. We findl using a formula
given in that paper; we can choosel to achieve an arbitrarily
low false negative rate.

4.3. Experimental Setup

We performed a large scale study on our clone detection
tool using the disassembled representations of the Windows
XP sytem executables and libraries. All runs were done
on a workstation with two Xeon X5355 2.66 GHz quad-
core processors and 16 GB of RAM. We only use one of
the cores in our experiments. We have a 4-disk RAID with
15,000 RPM 300 GB disks. The machine runs Red Hat
Enterprise Linux 4 with kernel version 2.6.9-78. None of
our runs used more than 4 GB of memory for inexact clone
detection.

5. Experimental Results
In this section we evaluate our tool using a large scale

study on the Windows XP system libraries for various win-
dow sizes. Accoring to Table 1 there are many small func-
tions that are not covered by the larger window sizes. About
2/3 of the 1,108,535 functions in Windows XP system files
are less than the smallest window size. These could be cov-
ered by the clone detection by reducing the window size.
For window sizes 40 to 200 the number of files where at
least one function is covered do not change considerably.

Table 1. Functions and files with at least one
vector

Stride # of files # of functions

500 863 7,072
200 1,486 42,819
120 1,633 97,588
80 1,681 168,224
40 1,722 342,874

5.1. Clone Quantity

We explored the problem size for a range of different
window sizes, total number of vectors, and clusters in our
data set; see Table 2. We evaluatated the clone quantity
relative to the percentage of the original code that any vector
(found in the dataset) covers. If an instruction is covered
more than once by different clones it is only counted once.

Table 2. Clone statistics
Window Size Vectors Clusters Clones

500 2,588,507 206,785 704,263
200 7,963,384 587,582 2,039,093
120 13,130,524 966,604 3,419,038
80 18,304,493 382,023 1,227,669
40 27,946,044 2,368,355 8,636,593

Figure 3. Total coverage

Figure 3 shows that the code covered increases with de-
creasing similarity for all window sizes, but the total cov-
erage is much larger for smaller window sizes. The to-
tal coverage decrease with increasing window size because
many smaller functions do not contain enough instructions
to fill one sliding window since we respect function bound-
aries. When the similarity is decreased the covered code ap-
proaches the percentile of the code covered by the windows.
For instance the coverage is11.9% for window size 500 and
32% for window size 200. We also notice that smaller win-
dow sizes reach a higher level of coverage for a higher sim-
ilarity grade. This is both due to instruction sequences of
smaller window sizes covering smaller functions, and that
smaller regions of the code may be clones even if they are
contained within larger, non-cloned contexts.

Table 3. Size of Clone Clusters
Stride > 2 > 4 > 16 > 64 > 128

500 69,775 16,705 2,420 531 0
200 196,540 59,336 5,694 905 11
120 325,010 105,773 10,007 1,404 125
80 467,737 157,983 15,442 2,117 337
40 798,272 286,066 32,585 3,919 890

Table 3 shows that when the window sizes increase the
average size of the clone clusters decrease. This is a vali-
dation of the intuition that larger instruction sequences are

8

LLNL-PROC-406820

more unique than shorter instruction sequences.

5.2. Clone Quality

Table 4. False positive rate using mnemonics

Window Size False Positive Rate

500 15.54
200 16.92
120 18.31
80 19.19
40 26.08

Table 5. False positives and coverage
Window Size False Positives (%) Coverage (%)

500 3.3 3.0
200 2.9 7.9
120 2.9 12.5
80 2.9 17.1
40 3.2 27.8

In order to evaluate the clone quality we compare the re-
sults found using the normalized instruction sequence with
the clones found using exact clone detection on the nor-
malized instruction sequence. We define a false positive
as any clone that is not a clone in terms of the instruc-
tion sequence, but which is still part of the clones found
by LSH. This metric was used as a way to evaluate how
well the feature vectors characterize the normalized instruc-
tion sequence when doing exact clone detection. Manual in-
spection of the clones found by our inexact clone detection
found similar sequences of instructions for large window
sizes, but the results were less reliable for smaller window
sizes.

We found our false positive rate to be low as shown in
Table 5. When only using mnemonics for detecting code
clones the false positive rate is high as shown in Table 4

5.3. Scalability

Table 6. Vector generation time (min)
Window Size VecGen

500 225
200 247
120 254
80 275
40 277

We show that our tool is scalable by doing a large scale

Figure 4. Runtime (in min)

study on the Windows XP system files for similarities be-
tween 0.90 and 1.0, where 1.0 is exact clone detection. For
all the window sizes used in this study the stride is 1. This is
the first research study that we are aware of which evaluates
LSH on this large of a data set.

The vectors are stored in a database for each stride and
window size. This database is generated once and re-used
later. Table 6 shows that we generate vectors scalably.

Figure 4 shows that our tool detects clones scalable on
our vector database for all window sizes. The runtime
seems to increase as expected for anO(n log n) algorithm
with the two factors which contribute to an increase in the
data set size; decreasing window size leading to more vec-
tors and decreasing similarity grade leading to a higher like-
lihood of hashing vectors into the same bucket.

5.4. Estimation of Largest Clone Size

Table 7. Largest clone pair sizes with exact
similarity

Stride > 40 > 80 > 200 > 500 > 1000

500 5,569 5,569 5,569 8,799 5,377
200 89,888 89,888 89,888 8,965 5,406
120 299,933 299,933 83,940 9,113 5,441
80 640,186 640,186 108,766 9,256 5,472
40 2,440,286 931,672 178,871 12,335 5,578

UsingAlgorithm 7 we estimate the largest clones for ex-
act clone detection. Unlike all other algorithms, finding the
largest clones produces a set of clone pairs instead of a set
of clusters. Table 7 shows that smaller window sizes gen-
erate clone pairs that combine to form larger clones. Be-
cause a data set generated using a small window size covers
a smaller part of a larger clone it is expected that the com-
bination of the smaller clone pairs will be an overestimate
of the number of larger clones, but the table shows that this

9

LLNL-PROC-406820

overestimate seems insignificant for all window sizes except
window size 40.

5.5. Visualization of Clone Clusters

Figure 5 illustrates our clone detection efforts on Win-
dows XP. Green boxes represent clones and all other colored
boxes represent files within the system32 directory in Win-
dows XP. The height of a clone (green box) represents the
number of clones detected between some files. The height
of a file represents the number of functions that are clones
(within that file) with other functions (contained in other
files), i.e. the more clones a file has, the larger the box. The
width of the boxes is merely determined by each boxes’ la-
bel. Different sub-directories within the system32 directory
are illustrated with different colors. For instance, thedrivers
directory is color coded yellow and theusmtdirectory is
colored orange.

The image reveals that much of Windows XP is some-
what related, i.e. many clones exist. However, it appears
that our clone detection approach has detected correctly that
most of the drivers have lots of functionality in common.
The red color represents files that have the stringusr in their
name.

Figure 5. Clone visualization of WindowsXP

Figure 6 shows fractions of Figure 5 more in detail.
For instance,clone 37 reveals the relationship between

Windows VPN components, such asCVPNDRVA.sys,vp-
napi.dll and CSGina.dll. Similarly,clone 166reveals a
clone relationship between the different Windows Manage-
ment Instrumentation components.Clone 986is another
clone detected by our tool that contains amongst others the
Windows system information applicationsysteminfo. It ap-
pears thatsysteminfoshares functionality with the system
applicationstasklist,taskkill andgetmac. All the results il-
lustrated in Figure 5 and Figure 6 use a window size of 120
for clone detection.

6. Related Work

There are no academic puclication on binary clone de-
tection that we are aware of, but Schulman [15] did a clone
study using mnemonics and API calls. This approach is not
accurate since this insufficiently categorize the instruction
sequence.

Many studies and tools on source clone detection and
clone coverage exist. There are tools tailored toward finding
plagiarism, such as Moss [14], JPlag (http://www.jplag.de).
PR-Miner [13] uses frequent item set mining to detect im-
plicit, high-level programming patterns for specification
discovery and bug-detection. These tools are less accu-
rate and therefore not applicable to source code or binary
clone detection. Other tools, such as CP-Miner [12] and
CCFinder [8] are available. These are token based and usu-
ally more accurate and scalable, but they tend to be sensitive
to minor code changes.

Other studies include, Lagueet al. [11], examining six
versions of a telecommunications software systems; Kimet
al. [9] investigating clones and their life span; Baxteret
al. [4]applying AST hashing to detect exact and near-miss
clones; Wahleret al. [17] using frequent item-set data
mining techniques on ASTs to detect clones with minor
changes; Basit and Jarzabek [3] using a frequent item set
data mining algorithm to find design level similarities; and
Jianget al.[7] using characteristic vectors of ASTs to detect
clones.

Our approach uses feature vectors, similar to Jiang,
where we characterize normalized instruction sequences for
our clone detection. However, our work is significantly dif-
ferent from the above studies, as we perform our clone de-
tection on binaries and not source code. This work is novel
as binary clone detection has not yet been researched.

7 Conclusions and Future Work

In this paper, we have presented a novel clone detec-
tion algorithm for binaries. We have implemented the al-
gorithm and conducted a large-scale empirical evaluation
of it on Windows XP. Results show that it is scalable and
precise, thus practical to enable many applications on bi-
naries. There are a number of possible directions for fu-
ture work. First, we plan to conduct further studies with

10

LLNL-PROC-406820

Figure 6. Visualization of selected clones in WindowsXP.

our technique, for example, by analyzing different versions
of Windows and other operating systems binaries, and with
other application components such as Microsoft Office. We
would also like to understand the impact of different com-
pilers and compiler optimizations on detection results. Fi-
nally, we plan to apply our technique to a number of ap-
plication domains such as protecting intellectual properties
and detecting latent bugs.

8 Acknowledgments
We wish to thank Lingxiao Jiang and Mark Gabel for

useful insights about LSH, and helpful comments on the
paper. Thanks to Taeho Kwon for Windows XP insights.
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

References
[1] A. Andoni and P. Indyk. E2LSH: Exact Euclidean locality-

sensitive hashing. Web:http://www.mit.edu/~andoni/
LSH/, 2004.

[2] B. S. Baker. Parameterized duplication in strings: Algo-
rithms and an application to software maintenance.SIAM J.
Comput., 26(5):1343–1362, 1997.

[3] H. A. Basit and S. Jarzabek. Detecting higher-level similar-
ity patterns in programs. InESEC/FSE-13, pages 156–165,
2005.

[4] I. D. Baxter, C. Pidgeon, and M. Mehlich. DMSR©: Program
transformations for practical scalable software evolution. In
ICSE, pages 625–634, 2004.

[5] M. Gabel, L. Jiang, and Z. Su. Scalable detection of seman-
tic clones. InICSE, pages 321–330, 2008.

[6] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. InVery Large Data Bases,

pages 518–529, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[7] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard:
Scalable and accurate tree-based detection of code clones.
In ICSE, pages 96–105, 2007.

[8] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multi-
linguistic token-based code clone detection system for large
scale source code.IEEE Trans. Softw. Eng., 28(7):654–670,
2002.

[9] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empir-
ical study of code clone genealogies.SIGSOFT Softw. Eng.
Notes, 30(5):187–196, 2005.

[10] R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. InSymposium on Static Analysis,
pages 40–56, London, UK, 2001. Springer-Verlag.

[11] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hude-
pohl. Assessing the benefits of incorporating function clone
detection in a development process. InICSM, page 314,
Washington, DC, USA, 1997. IEEE Computer Society.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: a tool
for finding copy-paste and related bugs in operating system
code. InOSDI, pages 20–20, 2004.

[13] Z. Li and Y. Zhou. PR-Miner: Automatically extracting im-
plicit programming rules and detecting violations in large
software code. InESEC/FSE-13, pages 306–315, 2005.

[14] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing:
Local algorithms for document fingerprinting. InManage-
ment of Data, pages 76–85, 2003.

[15] A. Schulman. Finding binary clones with opstrings and
function digests.Doctor Dobb’s J, 30(9):64–70, 2005.

[16] G. Shakhnarovich, T. Darrell, and P. Indyk.Nearest-
Neighbor Methods in Learning and Vision: Theory and
Practice (Neural Information Processing). The MIT Press,
2006.

[17] V. Wahler, D. Seipel, J. W. von Gudenberg, and G. Fischer.
Clone detection in source code by frequent itemset tech-
niques. InSource Code Analysis and Manipulation, pages
128–135, 2004.

11

LLNL-PROC-406820

